

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГТУ», ВГТУ)

Система менеджмента качества

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ

«АВИАЦИОННАЯ И РАКЕТНО - КОСМИЧЕСКАЯ ТЕХНИКА» (направление подготовки 24.06.01)

«Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов»

(направленность 05.07.05)

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕПЛОВЫЕ, ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ И ЭНЕРГОУСТАНОВКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

Программа составлена в соответствии с требованиями ФГОС ВО (по программам магистратуры и специалитета)

I. Перечень элементов содержания, проверяемых на вступительном испытании

Общие положения и междисциплинарные вопросы

Теоретическая часть:

- 1. Гидрогазодинамика
- 2. Термодинамика
- 3. Топлива и рабочие процессы в авиационных и ракетных двигателях
- 4. Теория и расчет жидкостных ракетных двигателей
- 5. Динамика и прочность ЖРД
- 6. Конструирование камер ЖРД
- 7. Теория и проектирование ТНА
- 8. Конструирование агрегатов ЖРД
- 9. Технология изготовления деталей и сборка ЖРД
- 10.Пневмогидравлические схемы ЖРД

Практическая часть:

- 1. «Теплопередача»
- 2. «Топлива и рабочие процессы в авиационных и ракетных двигателях»
- 3. «Прикладная гидрогазодинамика»
- 4. «Теория и расчет жидкостных ракетных двигателей»

Гидрогазодинамика

- 1. 1Основные свойства моделей жидких и газообразных сред. Основные параметры состояния жидкости и газа.
- 2. Основы гидростатики. Напряжения в жидкости. Дифференциальное уравнение гидростатики в форме Эйлера. Основное уравнение гидростатики.
- 3. Основные уравнения динамики жидкости. Уравнение сохранения вещества.
- 4. Уравнение энергии для установившегося одномерного течения. Линия полного напора и пъезометрическая линия.
- 5. Динамические уравнения движения жидкости уравнения Навье-Стокса.
- 6. Основы теории подобия. Динамическое подобие. Критерии подобия.
- 7. Ламинарные и турбулентные течения жидкости и газа. Уравнения Рейнольдса.

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕПЛОВЫЕ, ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ И ЭНЕРГОУСТАНОВКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

Термодинамика

- 1. Параметры и закономерности термодинамики. Термодинамические параметры состояния. Термодинамическое рабочее тело и система. Уравнение Клапейрона и закон Авогадро.
- 2. Определение параметров газовых смесей. Законы Дальтона и Амага.
- 3. Первое начало термодинамики. Понятие об энергии. Теплота и работа. Энтальпия.
- 4. Теплоемкость газов. Уравнение Майера и коэффициент Пуассона.
- 5. Энтропия и ее прикладное значение. Диаграмма «температура-энтропия». Политропные процессы.
- 6. Второе начало термодинамики. Термодинамическая сущность работы прямых и обратных машин. Цикл Карно. Термодинамическая шкала температур. Интеграл Клаузиуса.

Топлива и рабочие процессы в авиационных и ракетных двигателях

- 1. 1Основные сведения о жидких ракетных топливах и их физико-химических характеристиках.
- 2. Требования к топливам. Энергетические характеристики топлив.
- 3. Осваиваемые и исследуемые топливные композиции. Металлосодержащие топлива. Гелеобразные топлива. Псевдожидкое топливо.

Теория и расчет жидкостных ракетных двигателей

- 1. 1Общие сведения о ЖРД
- 2. Типы ракетных двигателей (РД). Классификация РД. Ракетные двигатели на химических топливах. Особенности и области применения различных типов РД.
- 3. Краткий обзор развития ЖРД. Основные параметры, характеризующие жидкостные ракетные двигатели (ЖРД). Формулы Циолковского и Мещерского.
- 4. Уравнение тяги ЖРД. Основные составляющие тяги камеры, место их приложения.
- 5. Характеристические параметры ЖРД; удельный импульс, характеристическая скорость, коэффициент тяги сопла, удельная масса.
- 6. Оценка потерь в камере ЖРД. Расчет тяги и удельного импульса камеры ЖРД с использованием газодинамических функций.
- 7. Течение в соплах ЖРД
- 8. Общие сведения о схемах и оценке совершенства сопл. Методы профилирования сопла Лаваля.
- 9. Анализ и оценка потерь в соплах ЖРД.
- 10. Характеристики ЖРД. Общие сведения. Дроссельная характеристика. Высотная характеристика. Управление вектором тяги.

THE WAY OF THE PARTY OF THE PAR

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕПЛОВЫЕ, ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ И ЭНЕРГОУСТАНОВКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

- 11. Расчет системы смесеобразования
- 12. Процессы в камере ЖРД. Теория и расчет однокомпонентных центробежных форсунок без учета вязкости компонентов топлива. Расчет с учетом вязкости.
- 13. Расчет двухкомпонентных форсунок с внешним и внутренним смешением компонентов топлива.
- 14. Влияние конструктивных факторов на гидравлику центробежных форсунок. Распыливание топлива. Смешение компонентов топлива. Испарение топлива. Воспламенение топлива.
- 15. Расчет и выбор объема камеры сгорания. Расчет и выбор безразмерной площади камеры сгорания
- 16. Термодинамический расчет процессов в ЖРД
- 17. Основы расчетов термодинамических свойств топлив. Расчеты по составу компонентов. Энтальпия топлива. Системы отсчета полных энтальпий. Вычисление полной энтальпии по теплотам реакций.
- 18.Предварительное распределение соотношение компонентов по сечениям КС, в предположении двухслойной модели (Ктст, Ктя, \dot{m}_{cm} , \dot{m}_{g} , \dot{m}_{g}). Определение среднего соотношения компонентов по камере.
- 19. Расчет сгорания и истечения топлива. Понятие о равновесном составе газов. Уравнения химического равновесия. Константы химического равновесия.
- 20. Вычисления по константам равновесия. Уравнения сохранения вещества при химических реакциях. Система уравнений для расчета равновесного состава продуктов сгорания при заданной температуре и давлении.
- 21. Расчет теоретической температуры и равновесного состава ПС в сопле камеры ЖРД при изоэнтропическом течении. Расчет теоретических параметров истечения.
- 22. Охлаждение и теплозащита в ЖРД
- 23.Особенности конвективного теплообмена в камере сгорания и сопле. Методы расчета конвективных тепловых потоков в камере.
- 24. Лучистый теплообмен в условиях камеры сгорания и сопла. Расчет лучистых тепловых потоков.
- 25.Особенности и схемы теплозащиты стенок камеры ЖРД. Охлаждающие свойства различных компонентов топлива. Применение теплозащитных покрытий.
- 26. Физические основы и методы расчета наружного и внутреннего охлаждения.
- 27.Способы интенсификации наружного охлаждения. Особенности расчета тепловых потоков при завесном охлаждении.
- 28. Неустойчивость рабочего процесса в ЖРД
- 29. Общие сведения о неустойчивости горения и классификация типов неустойчивости. Низкочастотные колебания и методы их подавления.

ΦΓΕΟΥ ΒΟ «ΒΓΤΥ», ΒΓΤΥ

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕПЛОВЫЕ, ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ И ЭНЕРГОУСТАНОВКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

30.Высокочастотная неустойчивость камеры ЖРД. Методы борьбы с ВЧ колебаниями.

Динамика и прочность ЖРД

- 1. 1Расчет на прочность узла оболочек камеры и сопла.
- 2. Устойчивость и расчеты сопла на устойчивость.
- 3. Расчет на прочность головки камеры.
- 4. Расчет на прочность дисков турбин
- 5. Расчет валов ТНА.
- 6. Расчет на прочность трубопроводов, нагруженных внешним и внутренним давлением.

Конструирование камер ЖРД

- 1. 1Проектирование ЖРД. Техническое задание. Последовательность проектирования. Модернизация ЖРД в процессе эксплуатации. Техническая документация, выпускаемая при проектировании.
- 2. Определение основных размеров камеры и способы профилирования сопла.
- 3. Конструктивные особенности узла оболочек. Силовые и температурные нагрузки. Схемы связывания оболочек. Конструкция поясов завесы. Применяемые материалы.
- 4. Конструкция головки: силовые схемы, особенности проектирования. Применяемые материалы.
- 5. Прочностная надежность камеры и газогенератора (ГГ). Анализ нагрузок. Методы расчета на прочность оболочек камер сгорания, находящихся за пределами упругости
- 6. Расчет камеры на общую несущую способность и на местные прогибы. Расчет на прочность связей.
- 7. Расчет на прочность головки камеры сгорания.

Теория и проектирование ТНА

- 1. 1Вытеснительные системы подачи топлива (ВСПТ). Конструктивные узлы, входящие в ВСПТ. Расчет на прочность элементов ВСПТ. Применяемые материалы.
- 2. Насосные системы подачи топлива (НСПТ). Элементы, входящие в НСПТ.
- 3. Классификация и основные элементы в ТНА. Способы запуска ТНА. Узлы ТНА.
- 4. Газовые турбины, их типы, составные элементы турбин.
- 5. Центробежные насосы, их классификация. Элементы насосов, их конструкция. Влияние свойств компонентов на конструкцию насосов. Применяемые материалы.
- 6. Осевые насосы. Конструкция осевых насосов. Способы разгрузки от осевых сил.

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕПЛОВЫЕ, ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ И ЭНЕРГОУСТАНОВКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

- 7. Уплотнения в ТНА, их классификация и конструкция. Области применения тех или иных уплотнений. Материалы контактных пар уплотнений.
- 8. Подшипники роторов ТНА. Влияние свойств компонентов на конструкцию подшипников. Способы разгрузки опор от осевых сил. Способы отвода тепла от подшипников.
- 9. Расчет на прочность элементов ТНА. Расчет на прочность валов, корпусов, диффузоров, дисков.
- 10. Критические частоты вращения роторов. Критическая частота вращения. Понятия о «жестком» и «гибком» валах.

Конструирование агрегатов ЖРД

- 1. 1Классификация агрегатов автоматики и регулирования ЖРД. Требования к агрегатам.
- 2. Топливные клапаны: конструкции и расчет. Применяемые материалы.
- 3. Регуляторы. Конструкции и расчет. Применяемые материалы.
- 4. Пневмоклапаны и вентили.
- 5. Редукторы и регуляторы постоянства давлений. Конструкции и расчет. Применяемые материалы.

Технология изготовления деталей и сборка ЖРД

- 1. 1Технологический процесс и его структура. Связь между чертежом и технологическим процессом.
- 2. Виды операций. Операционные и общие припуски. Операционные размеры и допуски.
- 3. Технологические базы в машиностроении.
- 4. Состояние поверхностного слоя. Параметры, структура, глубина, степень наклепа. Остаточные напряжения. Упрочняющая технология.
- 5. Защитные покрытия. Поверхностно-термическая обработка. Диффузионные покрытия. Покрытие напылением. Покрытия из неметаллических материалов.

Прикладная гидрогазодинамика

- 1. 1Топливные баки. Классификация. Расчет объемов топливных баков.
- 2. Влияние теплообмена на работу системы подачи топлива.
- 3. Расчет газогенераторов. Однокомпонентный ЖГГ. Двухкомпонентный ЖГГ.
- 4. Пневмогидравлический расчет ЖРД. Задачи расчета. Свойства жидкостей и газов, применяемых в ЖРД.
- 5. Пневмогидравлический расчет ЖРД. Гидравлические сопротивления. Потери давления по длине канала. Вход потока в трубы. Поворот потока. Слияние и разделение потоков. Течение через дроссель.

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕПЛОВЫЕ, ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ И ЭНЕРГОУСТАНОВКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

- 6. Пневмогидравлический расчет ЖРД. Основы расчета течения сжимаемой жидкости. Расчет газопроводов.
- 7. Порядок проведения пневмогидравлического расчета. Гидравлическая характеристика. Расчет трубопроводов.

Пневмогидравлические схемы ЖРД

- 1. Пневмогидросхемы (ПГС) ЖРД, общие требования к ПГС. Примеры пневмогидросхем различных типов ЖРД.
- 2. Понятие о запуске и останове ЖРД. Требования к запуску и останову.
- 3. Типы запуска и их влияние на схему и конструкцию двигателя и его элементов.
- 4. Способы зажигания компонентов топлива. Схемные и конструктивные способы обеспечения надежного запуска и останова двигателя.
- 5. Составление структурной схемы двигателя и расчет основных параметров. Определение давлений подачи компонентов. Определение расходов. Порядок расчета схемы с дожиганием.
- 6. Нахождение относительного расхода газогенераторного газа на турбину при схеме без дожигания. Расчет коэффициента, учитывающего потери импульса на привод ТНА (фТНА).
- 7. Общие сведения о комбинированных двигателях. Ракетно-прямоточные двигатели. Ракетно-турбинные двигатели. Гидроракетные двигатели. Гибридные двигатели.

П. Требования к уровню подготовки поступающего

Поступающий должен знать/понимать:

- конструкцию деталей, узлов и элементов ЖРД
- узлы и агрегаты системы подачи компонентов топлива в камеру сгорания ЖРД
- системы охлаждения, обеспечивающие надежный режим работы теплонапряженных узлов и деталей жидкостных ракетных двигателей и энергетических установок, а также высокоэффективные теплообменные аппараты в составе жидкостных ракетных двигательных установок

<u>Поступающий должен уметь:</u>

- рассчитывать и проектировать узлы и агрегаты системы подачи компонентов топлива в камеру сгорания жидкостных реактивных двигателей (ЖРД)
- выполнять расчеты статических и динамических характеристик рабочего процесса ЖРД, их узлов и элементов

ПРОГРАММА ПЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ.

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕПЛОВЫЕ, ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ И ЭНЕРГОУСТАНОВКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

- выполнять термо-прочностные расчеты и осуществлять конструирование деталей, узлов и элементов ЖРД
- разрабатывать эффективные системы охлаждения, обеспечивающие надежный режим работы теплонапряженных узлов и деталей жидкостных ракетных двигателей и энергетических установок, а также высокоэффективные теплообменные аппараты в составе жидкостных ракетных двигательных установок

III. Примерный вариант задания

Поступающий получает 3 (три) вопроса, на которые он должен расширенно письменно ответить. Вопросы выбираются из каждой части. При этом из теоретической части выбираются два вопроса.

Вопрос № 1. Характеристические параметры ЖРД; удельный импульс, характеристическая скорость, коэффициент тяги сопла, удельная масса.

Вопрос № 2. Способы зажигания компонентов топлива. Схемные и конструктивные способы обеспечения надежного запуска и останова двигателя.

Вопрос № 3. Расчет газогенераторов. Однокомпонентный ЖГГ. Двухкомпонентный ЖГГ.

IV. Критерии оценивания работ поступающих

Оценка знаний студентов производится по следующим критериям:

- оценка «отлично» выставляется, если он глубоко и прочно усвоил программный материал курса, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами и вопросами, причем не затрудняется с ответами при видоизменении заданий, правильно обосновывает принятые решения, владеет разносторонними навыками и приемами выполнения практических задач;
- оценка «хорошо» выставляется студенту, если он твердо знает материал курса, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения;
- оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности,

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕПЛОВЫЕ, ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ И ЭНЕРГОУСТАНОВКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических задач;

- оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями решает практические задачи или не справляется с ними самостоятельно.

V. Рекомендуемая литература

Основная литература:

- 1. Добровольский М.В. Жидкостные ракетные двигатели. Основы проектирования: Учебник для вузов/ М. В. Добровольский; под ред. Д.А. Ягодникова. 2-е изд., перераб. и доп. М.: МГТУ им. Баумана, 2006. 488 с.
- 2. Основы теории и расчета ЖРД. В 2 кн. /А.П.Васильев, В.М.Кудрявцев, В.А.Кузнецов, и др. М.: Высш. шк., 1993.
- 3. Алемасов В.Е. Теория ракетных двигателей: Учебник для вузов / В.Е. Алемасов, А.Ф. Дрегалин, А.П. Тишин; Под ред. В.П. Глушко. М.: Машиностроение, 1989. 464 с.
- 4. Овсянников Б.В., Боровский Т.И. Теория и расчет агрегатов питания ЖРД. М.: Машиностроение, 1986.-376 с.
- 5. Конструкция и проектирование жидкостных ракетных двигателей: Учебник для вузов / Г.Г. Гахун, В.И. Баулин, В.А. Володин и др.; Под ред. Г.Г. Гахуна. М.: Машиностроение, 1989. 424 с.
- 6. Теплотехника: учебник для техн. специальностей вузов / В. Н. Луканин, М. Г. Шатров, Г. М. Камфер и др.; под ред. В. Н. Луканина. М. : Высшая школа , 2006. 671с.
- 7. Кудинов, В. А. Техническая термодинамика: Учеб. пособие для втузов / В. А. Кудинов, Э. М. Карташов. М.: Высшая школа, 2005, 260 с.
 - 8. Сарнер С. Химия ракетных топлив. М.: Мир, 1969. 485 с.
- 9. Моисеев В.А. Технология производства жидкостных ракетных двигателей: Учебник / В.А. Моисеев, В.А. Тарасов, В.А. Колмыков, А.С. Филимонов М. Изд-во МГТУ им. Н.Э. Баумана, 2008 516 с.
- 10. Лойцянский Л.Г. Механика жидкости и газов: Учеб. для вузов М.: Дрофа, 2003.-840 с.
- 11. Бабкин А.И., Белов С.И., Рутовский Н.Б. и др. Основы автоматического управления ракетными двигательными установками. М.: Машиностроение, 1986. 456 с.
- 12. Сергель О.С. Прикладная гидрогазодинамика. М.: Машиностроение, 1982. 349 с.

ΦΓΕΟΎ ΒΟ «ΒΓΤΥ», ΒΓΤΥ

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕПЛОВЫЕ, ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ И ЭНЕРГОУСТАНОВКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

Дополнительная литература:

- 1. 1.Ефимочкин А.Ф. Проектирование принципиальных пневмогидравлических схем жидкостных ракетных двигателей: Учеб. пособие / А. Ф. Ефимочкин. Воронеж: ГОУВПО "Воронежский государственный технический университет", 2010. 264 с.
- 2. Иванов А.В. Конструирование жидкостных ракетных двигателей: дипломное проектирование: учеб. пособие / А.В. Иванов, Г.И. Скоморохов, Д.П. Шматов / [Электронный ресурс] Электрон. текстовые и граф. данные (1,06 Мб). Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2016. 167 с.
- 3. Гуртовой А.А. Расчет и конструирование агрегатов ЖРД: учеб. Пособие / А.А. Гуртовой, Г.И. Скоморохов, Д.П. Шматов/[Электронный ресурс] Электрон. текстовые и граф. данные (1,67 Мб). Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2016. 166 с.